Papers
Topics
Authors
Recent
2000 character limit reached

Weighted maximal regularity estimates and solvability of non-smooth elliptic systems II

Published 8 Dec 2010 in math.CA, math.AP, and math.FA | (1012.1735v2)

Abstract: We continue the development, by reduction to a first order system for the conormal gradient, of $L2$ \textit{a priori} estimates and solvability for boundary value problems of Dirichlet, regularity, Neumann type for divergence form second order, complex, elliptic systems. We work here on the unit ball and more generally its bi-Lipschitz images, assuming a Carleson condition as introduced by Dahlberg which measures the discrepancy of the coefficients to their boundary trace near the boundary. We sharpen our estimates by proving a general result concerning \textit{a priori} almost everywhere non-tangential convergence at the boundary. Also, compactness of the boundary yields more solvability results using Fredholm theory. Comparison between classes of solutions and uniqueness issues are discussed. As a consequence, we are able to solve a long standing regularity problem for real equations, which may not be true on the upper half-space, justifying \textit{a posteriori} a separate work on bounded domains.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.