Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Distributed Online Prediction

Published 7 Dec 2010 in cs.LG and math.OC | (1012.1370v1)

Abstract: The standard model of online prediction deals with serial processing of inputs by a single processor. However, in large-scale online prediction problems, where inputs arrive at a high rate, an increasingly common necessity is to distribute the computation across several processors. A non-trivial challenge is to design distributed algorithms for online prediction, which maintain good regret guarantees. In \cite{DMB}, we presented the DMB algorithm, which is a generic framework to convert any serial gradient-based online prediction algorithm into a distributed algorithm. Moreover, its regret guarantee is asymptotically optimal for smooth convex loss functions and stochastic inputs. On the flip side, it is fragile to many types of failures that are common in distributed environments. In this companion paper, we present variants of the DMB algorithm, which are resilient to many types of network failures, and tolerant to varying performance of the computing nodes.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.