Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Effective Clustering Approach to Web Query Log Anonymization

Published 3 Dec 2010 in cs.DB and cs.CR | (1012.0663v1)

Abstract: Web query log data contain information useful to research; however, release of such data can re-identify the search engine users issuing the queries. These privacy concerns go far beyond removing explicitly identifying information such as name and address, since non-identifying personal data can be combined with publicly available information to pinpoint to an individual. In this work we model web query logs as unstructured transaction data and present a novel transaction anonymization technique based on clustering and generalization techniques to achieve the k-anonymity privacy. We conduct extensive experiments on the AOL query log data. Our results show that this method results in a higher data utility compared to the state of-the-art transaction anonymization methods.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.