Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Cells in Coxeter groups I (1012.0489v4)

Published 2 Dec 2010 in math.RT, math.CO, and math.GR

Abstract: The purpose of this article is to shed new light on the combinatorial structure of Kazhdan-Lusztig cells in infinite Coxeter groups $W$. Our main focus is the set $\D$ of distinguished involutions in $W$, which was introduced by Lusztig in one of his first papers on cells in affine Weyl groups. We conjecture that the set $\D$ has a simple recursive structure and can be enumerated algorithmically starting from the distinguished involutions of finite Coxeter groups. Moreover, to each element of $\D$ we assign an explicitly defined set of equivalence relations on $W$ that altogether conjecturally determine the partition of $W$ into left (right) cells. We are able to prove these conjectures only in a special case, but even from these partial results we can deduce some interesting corollaries.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.