Papers
Topics
Authors
Recent
2000 character limit reached

A profile decomposition approach to the $L^\infty_t(L^3_x)$ Navier-Stokes regularity criterion

Published 1 Dec 2010 in math.AP and math.FA | (1012.0145v3)

Abstract: In this paper we continue to develop an alternative viewpoint on recent studies of Navier-Stokes regularity in critical spaces, a program which was started in the recent work by C. Kenig and the second author (Ann Inst H Poincar\'e Anal Non Lin\'eaire 28(2):159-187, 2011). Specifically, we prove that strong solutions which remain bounded in the space $L3(R3)$ do not become singular in finite time, a known result established by Escauriaza, Seregin and Sverak (Uspekhi Mat Nauk 58(2(350)):3-44, 2003) in the context of suitable weak solutions. Here, we use the method of "critical elements" which was recently developed by Kenig and Merle to treat critical dispersive equations. Our main tool is a "profile decomposition" for the Navier-Stokes equations in critical Besov spaces which we develop here. As a byproduct of this tool, assuming a singularity-producing initial datum for Navier-Stokes exists in a critical Lebesgue or Besov space, we show there is one with minimal norm, generalizing a result of Rusin and Sverak (J Funct Anal 260(3):879-891, 2011).

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.