Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Entropy density of spacetime and the Navier-Stokes fluid dynamics of null surfaces (1012.0119v1)

Published 1 Dec 2010 in gr-qc and hep-th

Abstract: It has been known for several decades that Einstein's field equations, when projected onto a null surface, exhibits a structure very similar to non-relativistic Navier-Stokes equation. I show that this result arises quite naturally when gravitational dynamics is viewed as an emergent phenomenon. Extremising the spacetime entropy density associated with the null surfaces leads to a set of equations which, when viewed in the local inertial frame, becomes identical to the Navier-Stokes (NS) equation. This is in contrast with the usual description of Damour-Navier-Stokes (DNS) equation in a general coordinate system, in which there appears a Lie derivative rather than convective derivative. I discuss this difference, its importance and why it is more appropriate to view the equation in a local inertial frame. The viscous force on fluid, arising from the gradient of the viscous stress-tensor, involves the second derivatives of the metric and does not vanish in the local inertial frame while the viscous stress-tensor itself vanishes so that inertial observers detect no dissipation. We thus provide an entropy extremisation principle that leads to the DNS equation, which makes the hydrodynamical analogy with gravity completely natural and obvious. Several implications of these results are discussed.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.