Computing Linear Matrix Representations of Helton-Vinnikov Curves (1011.6057v2)
Abstract: Helton and Vinnikov showed that every rigidly convex curve in the real plane bounds a spectrahedron. This leads to the computational problem of explicitly producing a symmetric (positive definite) linear determinantal representation for a given curve. We study three approaches to this problem: an algebraic approach via solving polynomial equations, a geometric approach via contact curves, and an analytic approach via theta functions. These are explained, compared, and tested experimentally for low degree instances.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.