Papers
Topics
Authors
Recent
2000 character limit reached

Concave Majorants of Random Walks and Related Poisson Processes

Published 14 Nov 2010 in math.PR and math.CO | (1011.3262v2)

Abstract: We offer a unified approach to the theory of concave majorants of random walks by providing a path transformation for a walk of finite length that leaves the law of the walk unchanged whilst providing complete information about the concave majorant. This leads to a description of a walk of random geometric length as a Poisson point process of excursions away from its concave majorant, which is then used to find a complete description of the concave majorant for a walk of infinite length. In the case where subsets of increments may have the same arithmetic mean, we investigate three nested compositions that naturally arise from our construction of the concave majorant.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.