Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Jiang's asymptotic distribution of the largest entry of a sample correlation matrix (1011.3164v1)

Published 13 Nov 2010 in math.PR

Abstract: Let $ {X, X_{k,i}; i \geq 1, k \geq 1 }$ be a double array of nondegenerate i.i.d. random variables and let ${p_{n}; n \geq 1 }$ be a sequence of positive integers such that $n/p_{n}$ is bounded away from $0$ and $\infty$. This paper is devoted to the solution to an open problem posed in Li, Liu, and Rosalsky (2010) on the asymptotic distribution of the largest entry $L_{n} = \max_{1 \leq i < j \leq p_{n}} \left | \hat{\rho}{(n)}_{i,j} \right |$ of the sample correlation matrix ${\bf \Gamma}{n} = \left ( \hat{\rho}{i,j}{(n)} \right ){1 \leq i, j \leq p{n}}$ where $\hat{\rho}{(n)}_{i,j}$ denotes the Pearson correlation coefficient between $(X_{1, i},..., X_{n,i})'$ and $(X_{1, j},..., X_{n,j})'$. We show under the assumption $\mathbb{E}X{2} < \infty$ that the following three statements are equivalent: \begin{align*} & {\bf (1)} \quad \lim_{n \to \infty} n{2} \int_{(n \log n){1/4}}{\infty} \left( F{n-1}(x) - F{n-1}\left(\frac{\sqrt{n \log n}}{x} \right) \right) dF(x) = 0, \ & {\bf (2)} \quad \left ( \frac{n}{\log n} \right ){1/2} L_{n} \stackrel{\mathbb{P}}{\rightarrow} 2, \ & {\bf (3)} \quad \lim_{n \rightarrow \infty} \mathbb{P} \left (n L_{n}{2} - a_{n} \leq t \right ) = \exp \left { - \frac{1}{\sqrt{8 \pi}} e{-t/2} \right }, - \infty < t < \infty \end{align*} where $F(x) = \mathbb{P}(|X| \leq x), x \geq 0$ and $a_{n} = 4 \log p_{n} - \log \log p_{n}$, $n \geq 2$. To establish this result, we present six interesting new lemmas which may be beneficial to the further study of the sample correlation matrix.

Summary

We haven't generated a summary for this paper yet.