A new type of results on probabilities of moderate deviations for i.i.d. random variables (2207.03545v1)
Abstract: Let ${X, X_{n}; n \geq 1}$ be a sequence of i.i.d. non-degenerate real-valued random variables with $\mathbb{E}X{2} < \infty$. Let $S_{n} = \sum_{i=1}{n} X_{i}$, $n \geq 1$. Let $g(\cdot): ~[0, \infty) \rightarrow [0, \infty)$ be a nondecreasing regularly varying function with index $\rho \geq 0$ and $\lim_{t \rightarrow \infty} g(t) = \infty$. Let $\mu = \mathbb{E}X$ and $\sigma{2} = \mathbb{E}(X - \mu){2}$. In this paper, we obtain precise asymptotic estimates for probabilities of moderate deviations by showing that, for all $x > 0$, [ \limsup_{n \rightarrow \infty} \frac{\log \mathbb{P}\left(S_{n} - n \mu > x \sqrt{n g(\log n)} \right)}{g(\log n)} = - \left(\frac{x{2}}{2\sigma{2}} \wedge \frac{\overline{\lambda}{1}}{2{\rho}} \right), ] [ \liminf{n \rightarrow \infty} \frac{\log \mathbb{P}\left(S_{n} - n \mu > x \sqrt{n g(\log n)} \right)}{g(\log n)} = - \left(\frac{x{2}}{2\sigma{2}} \wedge \frac{\underline{\lambda}{1}}{2{\rho}} \right), ] [ \limsup{n \rightarrow \infty} \frac{\log \mathbb{P}\left(S_{n} - n \mu < -x \sqrt{n g(\log n)} \right)}{g(\log n)} = - \left(\frac{x{2}}{2\sigma{2}} \wedge \frac{\overline{\lambda}{2}}{2{\rho}} \right), ] and [ \liminf{n \rightarrow \infty} \frac{\log \mathbb{P}\left(S_{n} - n \mu < -x \sqrt{n g(\log n)} \right)}{g(\log n)} = - \left(\frac{x{2}}{2\sigma{2}} \wedge \frac{\underline{\lambda}{2}}{2{\rho}} \right), ] where $\overline{\lambda}{1}$ are $\underline{\lambda}{1}$ are determined by the asymptotic behavior of $\mathbb{P}(X > t)$ and $\overline{\lambda}{2}$ and $\underline{\lambda}_{2}$ are determined by the asymptotic behavior of $\mathbb{P}(X < -t)$. Unlike those known results in the literature, the moderate deviation results established in this paper depend on both the variance and the asymptotic behavior of the tail distribution of $X$.