Tracy-Widom law for the extreme eigenvalues of sample correlation matrices (1110.5208v2)
Abstract: Let the sample correlation matrix be $W=YYT$, where $Y=(y_{ij}){p,n}$ with $y{ij}=x_{ij}/\sqrt{\sum_{j=1}nx_{ij}2}$. We assume ${x_{ij}: 1\leq i\leq p, 1\leq j\leq n}$ to be a collection of independent symmetric distributed random variables with sub-exponential tails. Moreover, for any $i$, we assume $x_{ij}, 1\leq j\leq n$ to be identically distributed. We assume $0<p<n$ and $p/n\rightarrow y$ with some $y\in(0,1)$ as $p,n\rightarrow\infty$. In this paper, we provide the Tracy-Widom law ($TW_1$) for both the largest and smallest eigenvalues of $W$. If $x_{ij}$ are i.i.d. standard normal, we can derive the $TW_1$ for both the largest and smallest eigenvalues of the matrix $\mathcal{R}=RRT$, where $R=(r_{ij}){p,n}$ with $r{ij}=(x_{ij}-\bar x_i)/\sqrt{\sum_{j=1}n(x_{ij}-\bar x_i)2}$, $\bar x_i=n{-1}\sum_{j=1}nx_{ij}$.