Papers
Topics
Authors
Recent
Search
2000 character limit reached

Worm Monte Carlo study of the honeycomb-lattice loop model

Published 9 Nov 2010 in cond-mat.stat-mech | (1011.1980v2)

Abstract: We present a Markov-chain Monte Carlo algorithm of "worm"type that correctly simulates the O(n) loop model on any (finite and connected) bipartite cubic graph, for any real n>0, and any edge weight, including the fully-packed limit of infinite edge weight. Furthermore, we prove rigorously that the algorithm is ergodic and has the correct stationary distribution. We emphasize that by using known exact mappings when n=2, this algorithm can be used to simulate a number of zero-temperature Potts antiferromagnets for which the Wang-Swendsen-Kotecky cluster algorithm is non-ergodic, including the 3-state model on the kagome-lattice and the 4-state model on the triangular-lattice. We then use this worm algorithm to perform a systematic study of the honeycomb-lattice loop model as a function of n<2, on the critical line and in the densely-packed and fully-packed phases. By comparing our numerical results with Coulomb gas theory, we identify the exact scaling exponents governing some fundamental geometric and dynamic observables. In particular, we show that for all n<2, the scaling of a certain return time in the worm dynamics is governed by the magnetic dimension of the loop model, thus providing a concrete dynamical interpretation of this exponent. The case n>2 is also considered, and we confirm the existence of a phase transition in the 3-state Potts universality class that was recently observed via numerical transfer matrix calculations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.