Théorie de Lubin-Tate non abélienne l-entière (1011.1887v1)
Abstract: For two distinct primes p and l, we investigate the Z_l-cohomology of the Lubin-Tate towers of a p-adic field. We prove that it realizes some version of Langlands and Jacquet-Langlands correspondences for flat families of irreducible supercuspidal representations parametrized by a Z_l-algebra R, in a way compatible with extension of scalars. When R is a field of characteristic l, this gives a cohomological realization of the Langlands-Vigneras correspondence for supercuspidals, and a new proof of its existence. When R runs over complete local algebras, this provides bijections between deformations of matching mod-l representations. Roughly speaking, we can decompose "the supercuspidal part" of the l-integral cohomology as a direct sum, indexed by irreducible supercuspidals \pi mod l, of tensor products of universal deformations of \pi and of its two mates. Besides, we also get a virtual realization of both the semi-simple Langlands-Vigneras correspondence and the l-modular Langlands-Jacquet transfer for all representations, by using the cohomology complex and working in a suitable Grothendieck group.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.