Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The q-Gelfand-Tsetlin graph, Gibbs measures and q-Toeplitz matrices (1011.1769v2)

Published 8 Nov 2010 in math.RT, math-ph, math.MP, math.PR, and math.QA

Abstract: The problem of the description of finite factor representations of the infinite-dimensional unitary group, investigated by Voiculescu in 1976, is equivalent to the description of all totally positive Toeplitz matrices. Vershik-Kerov showed that this problem is also equivalent to the description of the simplex of central (i.e. possessing a certain Gibbs property) measures on paths in the Gelfand-Tsetlin graph. We study a quantum version of the latter problem. We introduce a notion of a q-centrality and describe the simplex of all q-central measures on paths in the Gelfand-Tsetlin graph. Conjecturally, q-central measurets are related to representations of the quantized universal enveloping algebra U_\epsilon(gl_\infty). We also define a class of q-Toeplitz matrices and show that every extreme q-central measure corresponds to a q-Toeplitz matrix with non-negative minors. Finally, our results can be viewed as a classification theorem for certain Gibbs measures on rhombus tilings of the halfplane. We use a class of q-interpolation polynomials related to Schur functions. One of the key ingredients of our proofs is the binomial formula for these polynomials proved by Okounkov.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.