Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dualities and Identities for Entanglement-Assisted Quantum Codes

Published 26 Oct 2010 in quant-ph, cs.IT, and math.IT | (1010.5506v4)

Abstract: The dual of an entanglement-assisted quantum error-correcting (EAQEC) code is the code resulting from exchanging the original code's information qubits with its ebits. To introduce this notion, we show how entanglement-assisted (EA) repetition codes and accumulator codes are dual to each other, much like their classical counterparts, and we give an explicit, general quantum shift-register circuit that encodes both classes of codes.We later show that our constructions are optimal, and this result completes our understanding of these dual classes of codes. We also establish the Gilbert-Varshamov bound and the Plotkin bound for EAQEC codes, and we use these to examine the existence of some EAQEC codes. Finally, we provide upper bounds on the block error probability when transmitting maximal-entanglement EAQEC codes over the depolarizing channel, and we derive variations of the hashing bound for EAQEC codes, which is a lower bound on the maximum rate at which reliable communication over Pauli channels is possible with the use of pre-shared entanglement.

Citations (43)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.