Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Some simple bijections involving lattice walks and ballot sequences (1010.4847v1)

Published 23 Oct 2010 in math.CO

Abstract: In this note we observe that a bijection related to Littelmann's root operators (for type $A_1$) transparently explains the well known enumeration by length of walks on $\N$ (left factors of Dyck paths), as well as some other enumerative coincidences. We indicate a relation with bijective solutions of Bertrand's ballot problem: those can be mechanically transformed into bijective proofs of the mentioned enumeration formula.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.