Papers
Topics
Authors
Recent
2000 character limit reached

Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain

Published 21 Oct 2010 in stat.ME, econ.EM, math.ST, and stat.TH | (1010.4345v5)

Abstract: We develop results for the use of Lasso and Post-Lasso methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, $p$. Our results apply even when $p$ is much larger than the sample size, $n$. We show that the IV estimator based on using Lasso or Post-Lasso in the first stage is root-n consistent and asymptotically normal when the first-stage is approximately sparse; i.e. when the conditional expectation of the endogenous variables given the instruments can be well-approximated by a relatively small set of variables whose identities may be unknown. We also show the estimator is semi-parametrically efficient when the structural error is homoscedastic. Notably our results allow for imperfect model selection, and do not rely upon the unrealistic "beta-min" conditions that are widely used to establish validity of inference following model selection. In simulation experiments, the Lasso-based IV estimator with a data-driven penalty performs well compared to recently advocated many-instrument-robust procedures. In an empirical example dealing with the effect of judicial eminent domain decisions on economic outcomes, the Lasso-based IV estimator outperforms an intuitive benchmark. In developing the IV results, we establish a series of new results for Lasso and Post-Lasso estimators of nonparametric conditional expectation functions which are of independent theoretical and practical interest. We construct a modification of Lasso designed to deal with non-Gaussian, heteroscedastic disturbances which uses a data-weighted $\ell_1$-penalty function. Using moderate deviation theory for self-normalized sums, we provide convergence rates for the resulting Lasso and Post-Lasso estimators that are as sharp as the corresponding rates in the homoscedastic Gaussian case under the condition that $\log p = o(n{1/3})$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.