Papers
Topics
Authors
Recent
2000 character limit reached

On locally complex algebras and low-dimensional Cayley-Dickson algebras (1010.2156v2)

Published 11 Oct 2010 in math.RA

Abstract: The paper begins with short proofs of classical theorems by Frobenius and (resp.) Zorn on associative and (resp.) alternative real division algebras. These theorems characterize the first three (resp. four) Cayley-Dickson algebras. Then we introduce and study the class of real unital nonassociative algebras in which the subalgebra generated by any nonscalar element is isomorphic to C. We call them locally complex algebras. In particular, we describe all such algebras that have dimension at most 4. Our main motivation, however, for introducing locally complex algebras is that this concept makes it possible for us to extend Frobenius' and Zorn's theorems in a way that it also involves the fifth Cayley-Dickson algebra, the sedenions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.