A Harnack inequality and Hölder continuity for weak solutions to parabolic operators involving Hörmander vector fields (1010.1554v1)
Abstract: This paper deals with two separate but related results. First we consider weak solutions to a parabolic operator with H\"ormander vector fields. Adapting the iteration scheme of J\"urgen Moser for elliptic and parabolic equations in $\mathbb{R}n$ we show a parabolic Harnack inequality. Then, after proving the Harnack inequality for weak solutions to equations of the form $u_t = \sum X_i (a_{ij} X_j u)$ we use this to show H\"older continuity. We assume the coefficients are bounded and elliptic. The iteration scheme is a tool that may be adapted to many settings and we extend this to nonlinear parabolic equations of the form $u_t = -X_i* A_j(X_j u)$. With this we show both a Harnack inequality and H\"older continuity of weak solutions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.