PBW for an inclusion of Lie algebras (1010.0985v2)
Abstract: Let h \subset g be an inclusion of Lie algebras with quotient h-module n. There is a natural degree filtration on the h-module U(g)/U(g)h whose associated graded h-module is isomorphic to S(n). We give a necessary and sufficient condition for the existence of a splitting of this filtration. In turn such a splitting yields an isomorphism between the h-modules U(g)/U(g)h and S(n). For the diagonal embedding h \subset h \oplus h the condition is automatically satisfied and we recover the classical Poincae-Birkhoff-Witt theorem. The main theorem and its proof are direct translations of results in algebraic geometry, obtained using an ad hoc dictionary. This suggests the existence of a unified framework allowing the simultaneous study of Lie algebras and of algebraic varieties, and a closely related work in this direction is on the way.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.