Papers
Topics
Authors
Recent
Search
2000 character limit reached

Continuous-time random walk theory of superslow diffusion

Published 5 Oct 2010 in cond-mat.stat-mech | (1010.0782v1)

Abstract: Superslow diffusion, i.e., the long-time diffusion of particles whose mean-square displacement (variance) grows slower than any power of time, is studied in the framework of the decoupled continuous-time random walk model. We show that this behavior of the variance occurs when the complementary cumulative distribution function of waiting times is asymptotically described by a slowly varying function. In this case, we derive a general representation of the laws of superslow diffusion for both biased and unbiased versions of the model and, to illustrate the obtained results, consider two particular classes of waiting-time distributions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.