Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Poincaré functions with spiders' webs (1010.0299v1)

Published 2 Oct 2010 in math.DS and math.CV

Abstract: For a polynomial p with a repelling fixed point w, we consider Poincar\'{e} functions of p at w, i.e. entire functions L which satisfy L(0)=w and p(L(z))=L(p'(w)*z) for all z in the complex plane. We show that if the component of the Julia set of p that contains w equals {w}, then the (fast) escaping set of L is a spider's web; in particular it is connected. More precisely, we classify all linearizers of polynomials with regards to the spider's web structure of the set of all points which escape faster than the iterates of the maximum modulus function at a sufficiently large point.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.