Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Toolbox model of evolution of metabolic pathways on networks of arbitrary topology (1009.4478v1)

Published 22 Sep 2010 in q-bio.MN, q-bio.GN, and q-bio.PE

Abstract: In prokaryotic genomes the number of transcriptional regulators is known to quadratically scale with the total number of protein-coding genes. Toolbox model was recently proposed to explain this scaling for metabolic enzymes and their regulators. According to its rules the metabolic network of an organism evolves by horizontal transfer of pathways from other species. These pathways are part of a larger "universal" network formed by the union of all species-specific networks. It remained to be understood, however, how the topological properties of this universal network influence the scaling law of functional content of genomes. In this study we answer this question by first analyzing the scaling properties of the toolbox model on arbitrary tree-like universal networks. We mathematically prove that the critical branching topology, in which the average number of upstream neighbors of a node is equal to one, is both necessary and sufficient for the quadratic scaling. Conversely, the toolbox model on trees with exponentially expanding, supercritical topology is characterized by the linear scaling with logarithmic corrections. We further generalize our model to include reactions with multiple substrates/products as well as branched or cyclic metabolic pathways. Unlike the original model the new version employs evolutionary optimized pathways with the smallest number of reactions necessary to achieve their metabolic tasks. Numerical simulations of this most realistic model on the universal network from the KEGG database again produced approximately quadratic scaling. Our results demonstrate why, in spite of their "small-world" topology, real-life metabolic networks are characterized by a broad distribution of pathway lengths and sizes of metabolic regulons in regulatory networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube