Papers
Topics
Authors
Recent
Search
2000 character limit reached

Boundaries of escaping Fatou components

Published 22 Sep 2010 in math.CV and math.DS | (1009.4450v1)

Abstract: Let $f$ be a transcendental entire function and $U$ be a Fatou component of $f$. We show that if $U$ is an escaping wandering domain of $f$, then most boundary points of $U$ (in the sense of harmonic measure) are also escaping. In the other direction we show that if enough boundary points of $U$ are escaping, then $U$ is an escaping Fatou component. Some applications of these results are given; for example, if $I(f)$ is the escaping set of $f$, then $I(f)\cup{\infty}$ is connected.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.