Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Uniqueness results for the phase retrieval problem of fractional Fourier transforms of variable order (1009.3418v1)

Published 17 Sep 2010 in math.CA, math-ph, and math.MP

Abstract: In this paper, we investigate the uniqueness of the phase retrieval problem for the fractional Fourier transform (FrFT) of variable order. This problem occurs naturally in optics and quantum physics. More precisely, we show that if $u$ and $v$ are such that fractional Fourier transforms of order $\alpha$ have same modulus $|F_\alpha u|=|F_\alpha v|$ for some set $\tau$ of $\alpha$'s, then $v$ is equal to $u$ up to a constant phase factor. The set $\tau$ depends on some extra assumptions either on $u$ or on both $u$ and $v$. Cases considered here are $u$, $v$ of compact support, pulse trains, Hermite functions or linear combinations of translates and dilates of Gaussians. In this last case, the set $\tau$ may even be reduced to a single point (i.e. one fractional Fourier transform may suffice for uniqueness in the problem).

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.