Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimal designs for rational function regression (1009.1444v2)

Published 8 Sep 2010 in stat.CO and stat.ME

Abstract: We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and $\Phi_p$-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube