Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rate of convergence of linear functions on the unitary group

Published 3 Sep 2010 in math-ph, math.MP, and math.PR | (1009.0695v2)

Abstract: We study the rate of convergence to a normal random variable of the real and imaginary parts of Tr(AU), where U is an N x N random unitary matrix and A is a deterministic complex matrix. We show that the rate of convergence is O(N{-2 + b}), with 0 <= b < 1, depending only on the asymptotic behaviour of the singular values of A; for example, if the singular values are non-degenerate, different from zero and O(1) as N -> infinity, then b=0. The proof uses a Berry-Esse'en inequality for linear combinations of eigenvalues of random unitary, matrices, and so appropriate for strongly dependent random variables.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.