Papers
Topics
Authors
Recent
2000 character limit reached

Empirical processes, typical sequences and coordinated actions in standard Borel spaces

Published 1 Sep 2010 in cs.IT and math.IT | (1009.0282v2)

Abstract: This paper proposes a new notion of typical sequences on a wide class of abstract alphabets (so-called standard Borel spaces), which is based on approximations of memoryless sources by empirical distributions uniformly over a class of measurable "test functions." In the finite-alphabet case, we can take all uniformly bounded functions and recover the usual notion of strong typicality (or typicality under the total variation distance). For a general alphabet, however, this function class turns out to be too large, and must be restricted. With this in mind, we define typicality with respect to any Glivenko-Cantelli function class (i.e., a function class that admits a Uniform Law of Large Numbers) and demonstrate its power by giving simple derivations of the fundamental limits on the achievable rates in several source coding scenarios, in which the relevant operational criteria pertain to reproducing empirical averages of a general-alphabet stationary memoryless source with respect to a suitable function class.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.