2000 character limit reached
Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra
Published 31 Aug 2010 in math.GT | (1008.5396v1)
Abstract: We give a method for computing upper and lower bounds for the volume of a non-obtuse hyperbolic polyhedron in terms of the combinatorics of the 1-skeleton. We introduce an algorithm that detects the geometric decomposition of good 3-orbifolds with planar singular locus and underlying manifold the 3-sphere. The volume bounds follow from techniques related to the proof of Thurston's Orbifold Theorem, Schl\"afli's formula, and previous results of the author giving volume bounds for right-angled hyperbolic polyhedra.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.