Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Statistics and compression of scl (1008.4952v4)

Published 29 Aug 2010 in math.GR, math.DS, and math.GT

Abstract: We obtain sharp estimates on the growth rate of stable commutator length on random (geodesic) words, and on random walks, in hyperbolic groups and groups acting nondegenerately on hyperbolic spaces. In either case, we show that with high probability stable commutator length of an element of length $n$ is of order $n/\log{n}$. This establishes quantitative refinements of qualitative results of Bestvina-Fujiwara and others on the infinite dimensionality of 2-dimensional bounded cohomology in groups acting suitably on hyperbolic spaces, in the sense that we can control the geometry of the unit balls in these normed vector spaces (or rather, in random subspaces of their normed duals). As a corollary of our methods, we show that an element obtained by random walk of length $n$ in a mapping class group cannot be written as a product of fewer than $O(n/\log{n})$ reducible elements, with probability going to 1 as $n$ goes to infinity. We also show that the translation length on the complex of free factors of a random walk of length $n$ on the outer automorphism group of a free group grows linearly in $n$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.