Bounds on generalized Frobenius numbers (1008.4937v3)
Abstract: Let $N \geq 2$ and let $1 < a_1 < ... < a_N$ be relatively prime integers. The Frobenius number of this $N$-tuple is defined to be the largest positive integer that has no representation as $\sum_{i=1}N a_i x_i$ where $x_1,...,x_N$ are non-negative integers. More generally, the $s$-Frobenius number is defined to be the largest positive integer that has precisely $s$ distinct representations like this. We use techniques from the Geometry of Numbers to give upper and lower bounds on the $s$-Frobenius number for any nonnegative integer $s$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.