Papers
Topics
Authors
Recent
2000 character limit reached

An infinite family of superintegrable systems from higher order ladder operators and supersymmetry (1008.3073v2)

Published 18 Aug 2010 in math-ph and math.MP

Abstract: We will discuss how we can obtain new quantum superintegrable Hamiltonians allowing the separation of variables in Cartesian coordinates with higher order integrals of motion from ladder operators. We will discuss also how higher order supersymmetric quantum mechanics can be used to obtain systems with higher order ladder operators and their polynomial Heisenberg algebra. We will present a new family of superintegrable systems involving the fifth Painleve transcendent which possess fourth order ladder operators constructed from second order supersymmetric quantum mechanics. We present the polynomial algebra of this family of superintegrable systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.