Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The logarithmic residue density of a generalised Laplacian (1008.3039v1)

Published 18 Aug 2010 in math.DG, math-ph, and math.MP

Abstract: We show that the residue density of the logarithm of a generalised Laplacian on a closed manifold defines an invariant polynomial valued differential form. We express it in terms of a finite sum of residues of classical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulae provide a pedestrian proof of the Atiyah-Singer formula for a pure Dirac operator in dimension $4$ and for a twisted Dirac operator on a flat space of any dimension. These correspond to special cases of a more general formula by S. Scott and D. Zagier announced in \cite{Sc2} and to appear in \cite{Sc3}. In our approach, which is of perturbative nature, we use either a Campbell-Hausdorff formula derived by Okikiolu or a non commutative Taylor type formula.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.