Characteristic Classes and Integrable Systems for Simple Lie Groups
Abstract: This paper is a continuation of our previous paper \cite{LOSZ}. For simple complex Lie groups with non-trivial center, i.e. classical simply-connected groups, $E_6$ and $E_7$ we consider elliptic Modified Calogero-Moser systems corresponding to the Higgs bundles with an arbitrary characteristic class. These systems are generalization of the classical Calogero-Moser (CM) systems related to a simple Lie groups and contain CM systems related to some (unbroken) subalgebras. For all algebras we construct a special basis, corresponding to non-trivial characteristic classes, the explicit forms of Lax operators and Hamiltonians.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.