Papers
Topics
Authors
Recent
2000 character limit reached

Special polynomials and soliton dynamics (1007.3232v1)

Published 19 Jul 2010 in nlin.SI

Abstract: Special polynomials play a role in several aspects of soliton dynamics. These are differential polynomials in u, the solution of a nonlinear evolution equation, which vanish identically when u represents a single soliton. Local special polynomials contain only powers of u and its spatial derivatives. Non-local special polynomials contain, in addition, non-local entities (e.g., \delta x-1u). When u is a multiple-solitons solution, local special polynomials are localized in the vicinity of the soliton-collision region and fall off exponentially in all directions away from this region. Non-local ones are localized along soliton trajectories. Examples are presented of how, with the aid of local special polynomials, one can modify equations that have only a single-soliton solution into ones, which have that solution as well as, at least, a two-solitons solutions. Given an integrable equation, with the aid of local special polynomials, it is possible to find all evolution equations in higher scaling weights, which share the same single-soliton solution and are either integrable, or, at least, have a two-solitons solution. This is demonstrated for one or two consecutive scaling weights for a number of known equations. In the study of perturbed integrable equations, local special polynomials are responsible for inelastic soliton interactions generated by the perturbation in the multiple-soliton case, and for the (possible) loss of asymptotic integrability. Non-local special polynomials describe higher-order corrections to the solution, which are of an inelastic nature.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.