Interactive Learning-Based Realizability for Heyting Arithmetic with EM1
Abstract: We apply to the semantics of Arithmetic the idea of finite approximation'' used to provide computational interpretations of Herbrand's Theorem, and we interpret classical proofs as constructive proofs (with constructive rules for $\vee, \exists$) over a suitable structure $\StructureN$ for the language of natural numbers and maps of G\"odel's system $\SystemT$. We introduce a new Realizability semantics we callInteractive learning-based Realizability'', for Heyting Arithmetic plus $\EM_1$ (Excluded middle axiom restricted to $\Sigma0_1$ formulas). Individuals of $\StructureN$ evolve with time, and realizers may interact'' with them, by influencing their evolution. We build our semantics over Avigad's fixed point result, but the same semantics may be defined over different constructive interpretations of classical arithmetic (Berardi and de' Liguoro use continuations). Our notion of realizability extends intuitionistic realizability and differs from it only in the atomic case: we interpret atomic realizers aslearning agents''.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.