A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality (1007.1600v3)
Abstract: Let $\mathbb{M}$ be a smooth connected manifold endowed with a smooth measure $\mu$ and a smooth locally subelliptic diffusion operator $L$ satisfying $L1=0$, and which is symmetric with respect to $\mu$. We show that if $L$ satisfies, with a non negative curvature parameter, the generalized curvature inequality introduced by the first and third named authors in \cite{BG}, then the following properties hold: 1 The volume doubling property; 2 The Poincar\'e inequality; 3 The parabolic Harnack inequality. The key ingredient is the study of dimensional reverse log-Sobolev inequalities for the heat semigroup and corresponding non-linear reverse Harnack type inequalities. Our results apply in particular to all Sasakian manifolds whose horizontal Webster-Tanaka-Ricci curvature is non negative, all Carnot groups with step two, and to wide subclasses of principal bundles over Riemannian manifolds whose Ricci curvature is non negative.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.