Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Critical points with high accuracy and fluctuation origin of 2 and 3-dimensional Ising models (1007.1503v1)

Published 9 Jul 2010 in physics.gen-ph

Abstract: We proposed a new universal method for significantly increasing accuracy of critical points of 2 and 3-dimensional Ising models and exploring fluctuation mechanism. The method is based on analysis of block fractals and the renormalization group theory. We discussed hierarchies and rescaling rule of the self similar transformations, and define a fractal dimension of an ordered block, which minimum corresponds to a fixed point of the transformations. By the connectivity we divide the blocks into two types: irreducible and reducible. We find there are two block spin states: single state and k-fold state, each of which relates to a system or a subsystem described by a block spin Gaussian model set up by mathematic map. Using the model we obtain a universal formula of critical points by the minimal fractal dimensions. We computed the critical points with high accuracy for three Ising models. It is the first time to find a critical point only requires a fractal edge, which causes fluctuations, and the point acts as a fluctuation attractor. Finally, we discussed a possibility of different block spins at the critical point.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.