Papers
Topics
Authors
Recent
2000 character limit reached

Optimal Pricing in Social Networks with Incomplete Information

Published 9 Jul 2010 in cs.GT | (1007.1501v2)

Abstract: In revenue maximization of selling a digital product in a social network, the utility of an agent is often considered to have two parts: a private valuation, and linearly additive influences from other agents. We study the incomplete information case where agents know a common distribution about others' private valuations, and make decisions simultaneously. The "rational behavior" of agents in this case is captured by the well-known Bayesian Nash equilibrium. Two challenging questions arise: how to compute an equilibrium and how to optimize a pricing strategy accordingly to maximize the revenue assuming agents follow the equilibrium? In this paper, we mainly focus on the natural model where the private valuation of each agent is sampled from a uniform distribution, which turns out to be already challenging. Our main result is a polynomial-time algorithm that can exactly compute the equilibrium and the optimal price, when pairwise influences are non-negative. If negative influences are allowed, computing any equilibrium even approximately is PPAD-hard. Our algorithm can also be used to design an FPTAS for optimizing discriminative price profile.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.