Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Regionally proximal relation of order d is an equivalence one for minimal systems and a combinatorial consequence (1007.0189v2)

Published 1 Jul 2010 in math.DS

Abstract: By proving the minimality of face transformations acting on the diagonal points and searching the points allowed in the minimal sets, it is shown that the regionally proximal relation of order $d$, $\RP{[d]}$, is an equivalence relation for minimal systems. Moreover, the lifting of $\RP{[d]}$ between two minimal systems is obtained, which implies that the factor induced by $\RP{[d]}$ is the maximal $d$-step nilfactor. The above results extend the same conclusions proved by Host, Kra and Maass for minimal distal systems. A combinatorial consequence is that if $S$ is a dynamically syndetic subset of $\Z$, then for each $d\ge 1$, $${(n_1,...,n_d)\in \Zd: n_1\ep_1+... +n_d\ep_d\in S, \ep_i\in {0,1}, 1\le i\le d}$$ is syndetic. In some sense this is the topological correspondence of the result obtained by Host and Kra for positive upper Banach density subsets using ergodic methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.