Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Classification Of Gradient Change Features Using MLP For Handwritten Character Recognition (1006.5927v1)

Published 30 Jun 2010 in cs.CV

Abstract: A novel, generic scheme for off-line handwritten English alphabets character images is proposed. The advantage of the technique is that it can be applied in a generic manner to different applications and is expected to perform better in uncertain and noisy environments. The recognition scheme is using a multilayer perceptron(MLP) neural networks. The system was trained and tested on a database of 300 samples of handwritten characters. For improved generalization and to avoid overtraining, the whole available dataset has been divided into two subsets: training set and test set. We achieved 99.10% and 94.15% correct recognition rates on training and test sets respectively. The purposed scheme is robust with respect to various writing styles and size as well as presence of considerable noise.

Citations (6)

Summary

We haven't generated a summary for this paper yet.