Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Application of Statistical Features in Handwritten Devnagari Character Recognition (1006.5911v1)

Published 30 Jun 2010 in cs.CV

Abstract: In this paper a scheme for offline Handwritten Devnagari Character Recognition is proposed, which uses different feature extraction methodologies and recognition algorithms. The proposed system assumes no constraints in writing style or size. First the character is preprocessed and features namely : Chain code histogram and moment invariant features are extracted and fed to Multilayer Perceptrons as a preliminary recognition step. Finally the results of both MLP's are combined using weighted majority scheme. The proposed system is tested on 1500 handwritten devnagari character database collected from different people. It is observed that the proposed system achieves recognition rates 98.03% for top 5 results and 89.46% for top 1 result.

Citations (30)

Summary

We haven't generated a summary for this paper yet.