Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Correlated Character Recognition using Artificial Neural Network (1306.4629v1)

Published 19 Jun 2013 in cs.NE and cs.CV

Abstract: This paper investigates a method of Handwritten English Character Recognition using Artificial Neural Network (ANN). This work has been done in offline Environment for non correlated characters, which do not possess any linear relationships among them. We test that whether the particular tested character belongs to a cluster or not. The implementation is carried out in Matlab environment and successfully tested. Fifty-two sets of English alphabets are used to train the ANN and test the network. The algorithms are tested with 26 capital letters and 26 small letters. The testing result showed that the proposed ANN based algorithm showed a maximum recognition rate of 85%.

Citations (4)

Summary

We haven't generated a summary for this paper yet.