Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 333 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Langevin dynamics with constraints and computation of free energy differences (1006.4914v2)

Published 25 Jun 2010 in cond-mat.stat-mech

Abstract: In this paper, we consider Langevin processes with mechanical constraints. The latter are a fundamental tool in molecular dynamics simulation for sampling purposes and for the computation of free energy differences. The results of this paper can be divided into three parts. (i) We propose a simple discretization of the constrained Langevin process based on a standard splitting strategy. We show how to correct the scheme so that it samples {\em exactly} the canonical measure restricted on a submanifold, using a Metropolis rule in the spirit of the Generalized Hybrid Monte Carlo (GHMC) algorithm. Moreover, we obtain, in some limiting regime, a consistent discretization of the overdamped Langevin (Brownian) dynamics on a submanifold, also sampling exactly the correct canonical measure with constraints. The corresponding numerical methods can be used to sample (without any bias) a probability measure supported by a submanifold. (ii) For free energy computation using thermodynamic integration, we rigorously prove that the longtime average of the Lagrange multipliers of the constrained Langevin dynamics yields the gradient of a rigid version of the free energy associated with the constraints. A second order time discretization using the Lagrange multipliers is proposed. (iii) The Jarzynski-Crooks fluctuation relation is proved for Langevin processes with mechanical constraints evolving in time. An original numerical discretization without time-step error is proposed. Numerical illustrations are provided for (ii) and (iii).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube