Papers
Topics
Authors
Recent
Search
2000 character limit reached

Noncommutative integrability, paths and quasi-determinants

Published 24 Jun 2010 in math-ph, math.CO, math.MP, and math.QA | (1006.4774v2)

Abstract: In previous work, we showed that the solution of certain systems of discrete integrable equations, notably $Q$ and $T$-systems, is given in terms of partition functions of positively weighted paths, thereby proving the positive Laurent phenomenon of Fomin and Zelevinsky for these cases. This method of solution is amenable to generalization to non-commutative weighted paths. Under certain circumstances, these describe solutions of discrete evolution equations in non-commutative variables: Examples are the corresponding quantum cluster algebras [BZ], the Kontsevich evolution [DFK09b] and the $T$-systems themselves [DFK09a]. In this paper, we formulate certain non-commutative integrable evolutions by considering paths with non-commutative weights, together with an evolution of the weights that reduces to cluster algebra mutations in the commutative limit. The general weights are expressed as Laurent monomials of quasi-determinants of path partition functions, allowing for a non-commutative version of the positive Laurent phenomenon. We apply this construction to the known systems, and obtain Laurent positivity results for their solutions in terms of initial data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.