Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the functional limits for partial sums under stable law (1006.1073v2)

Published 5 Jun 2010 in math.PR

Abstract: For the partial sums $(S_n)$ of independent random variables we define a stochastic process $s_n(t):=(1/d_n)\sum_{k \le [nt]} ({S_k}/{k}-\mu)$ and prove that $$(1/{\log N})\sum_{n\le N}(1/n)\mathbf {I}\left{s_n(t)\le x\right} \to G_t(x)\quad \text{a.s.}$$ if and only if $(1/{\log N})\sum_{n\le N} (1/n)\mathbb{P}\left(s_n(t)\le x\right) \to G_t(x)$, for some sequence $(d_n)$ and distribution $G_t$. We also prove an almost sure functional limit theorem for the product of partial sums of i.i.d. positive random variables attracted to an $\alpha$-stable law with $\alpha\in (1,2]$.

Summary

We haven't generated a summary for this paper yet.