Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings
Abstract: Let R be a Cohen-Macaulay ring and M a maximal Cohen-Macaulay R-module. Inspired by recent striking work by Iyama, Burban-Iyama-Keller-Reiten and Van den Bergh we study the question of when the endomorphism ring of M has finite global dimension via certain conditions about vanishing of $\Ext$ modules. We are able to strengthen certain results by Iyama on connections between a higher dimension version of Auslander correspondence and existence of non-commutative crepant resolutions. We also recover and extend to positive characteristics a recent Theorem by Burban-Iyama-Keller-Reiten on cluster-tilting objects in the category of maximal Cohen-Macaulay modules over reduced 1-dimensional hypersurfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.