Papers
Topics
Authors
Recent
Search
2000 character limit reached

Vanishing of Ext, cluster tilting modules and finite global dimension of endomorphism rings

Published 28 May 2010 in math.AC and math.RT | (1005.5359v1)

Abstract: Let R be a Cohen-Macaulay ring and M a maximal Cohen-Macaulay R-module. Inspired by recent striking work by Iyama, Burban-Iyama-Keller-Reiten and Van den Bergh we study the question of when the endomorphism ring of M has finite global dimension via certain conditions about vanishing of $\Ext$ modules. We are able to strengthen certain results by Iyama on connections between a higher dimension version of Auslander correspondence and existence of non-commutative crepant resolutions. We also recover and extend to positive characteristics a recent Theorem by Burban-Iyama-Keller-Reiten on cluster-tilting objects in the category of maximal Cohen-Macaulay modules over reduced 1-dimensional hypersurfaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.