Papers
Topics
Authors
Recent
2000 character limit reached

LACBoost and FisherBoost: Optimally Building Cascade Classifiers

Published 22 May 2010 in cs.CV | (1005.4103v1)

Abstract: Object detection is one of the key tasks in computer vision. The cascade framework of Viola and Jones has become the de facto standard. A classifier in each node of the cascade is required to achieve extremely high detection rates, instead of low overall classification error. Although there are a few reported methods addressing this requirement in the context of object detection, there is no a principled feature selection method that explicitly takes into account this asymmetric node learning objective. We provide such a boosting algorithm in this work. It is inspired by the linear asymmetric classifier (LAC) of Wu et al. in that our boosting algorithm optimizes a similar cost function. The new totally-corrective boosting algorithm is implemented by the column generation technique in convex optimization. Experimental results on face detection suggest that our proposed boosting algorithms can improve the state-of-the-art methods in detection performance.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.