Papers
Topics
Authors
Recent
2000 character limit reached

Clark-Ocone type formula for non-semimartingales with finite quadratic variation

Published 20 May 2010 in math.PR | (1005.3608v2)

Abstract: We provide a suitable framework for the concept of finite quadratic variation for processes with values in a separable Banach space $B$ using the language of stochastic calculus via regularizations, introduced in the case $B= \R$ by the second author and P. Vallois. To a real continuous process $X$ we associate the Banach valued process $X(\cdot)$, called {\it window} process, which describes the evolution of $X$ taking into account a memory $\tau>0$. The natural state space for $X(\cdot)$ is the Banach space of continuous functions on $[-\tau,0]$. If $X$ is a real finite quadratic variation process, an appropriated It^o formula is presented, from which we derive a generalized Clark-Ocone formula for non-semimartingales having the same quadratic variation as Brownian motion. The representation is based on solutions of an infinite dimensional PDE.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.