Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Family of Ideals with Few Generators in Low Degree and Large Projective Dimension (1005.3361v1)

Published 19 May 2010 in math.AC

Abstract: StiLLMan posed a question as to whether the projective dimension of a homogeneous ideal I in a polynomial ring over a field can be bounded by some formula depending only on the number and degrees of the minimal generators of I. More recently, motivated by work on local cohomology modules in characteristic p, Zhang asked more specifically if the projective dimension of I is bounded by the sum of the degrees of the generators. We define a family of homogeneous ideals in a polynomial ring over a field of arbitrary characteristic whose projective dimension grows exponentially if the number and degrees of the generators are allowed to grow linearly. We therefore answer Zhang's question in the negative and provide a lower bound to any answer to StiLLMan's question. We also describe some explicit counterexamples to Zhang's question including an ideal generated by 7 quadrics with projective dimension 15.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.